Opinion Diffusion in Similarity-Driven Networks

Edoardo Baccini, Zoé Christoff and Rineke Verbrugge e.baccini@rug.nl

Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence University of Groningen

PhDs in Logic XIII, Turin

Social influence: an agent's opinions can be influenced by their friends or peers (Granovetter 1978; Easley and Kleinberg 2010).

Similarity-driven network change: agents tend to connect to other agents with whom they share similar opinions, and to disconnect from those who do not (McPherson, Smith-Lovin, and Cook 2001).

Social network logics for:

- diffusion on networks e.g. (Baltag et al. 2018; Christoff and Naumov 2019)
- network change e.g. (Smets and Velázquez-Quesada 2020)
- both happening at different times (Smets and Velázquez-Quesada 2019).

PhDs in Logic XIII

Threshold models of diffusion (Easley and Kleinberg 2010)

- set of agents initially accepting an issue
- uniform influenceability threshold

Adoption Rule

Agents accept an issue when a proportion of their influencers who accept the issue meets the threshold.

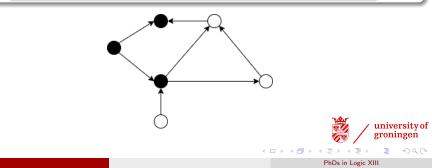


Threshold models of diffusion (Easley and Kleinberg 2010)

- set of agents initially accepting an issue
- uniform influenceability threshold

Adoption Rule

Agents accept an issue when a proportion of their influencers who accept the issue meets the threshold.

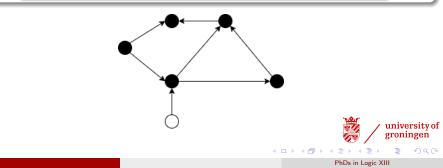


Threshold models of diffusion (Easley and Kleinberg 2010)

- set of agents initially accepting an issue
- uniform influenceability threshold

Adoption Rule

Agents accept an issue when a proportion of their influencers who accept the issue meets the threshold.

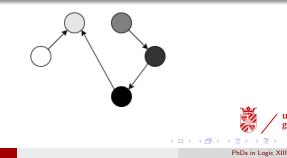


Threshold-based network change (McPherson, Smith-Lovin, and Cook 2001)

- set of issues;
- uniform similarity threshold.

Connection Rule

Two agents connect if and only if the set of issue they agree on meets the similarity threshold.

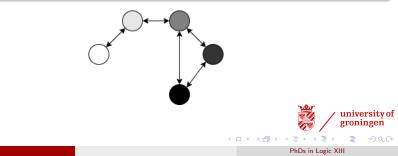


Threshold-based network change (McPherson, Smith-Lovin, and Cook 2001)

- set of issues;
- uniform similarity threshold.

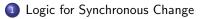
Connection Rule

Two agents connect if and only if the set of issue they agree on meets the similarity threshold.



- Logic for synchronous change
- Stabilization with a single binary issue
- Summary and further work

Overview



2 Stabilization with a single binary issue

Logic for Synchronous Change

Definition

A model \mathcal{M} is a tuple $\langle \mathcal{A}, \mathcal{S}, \mathcal{F}, \mathcal{V}, \omega, \tau \rangle$ such that:

- \mathcal{A} is a non-empty finite set of agents;
- $\mathcal{S} \subseteq \mathcal{A} \times \mathcal{A}$ is a social influence relation between agents;
- \mathcal{F} is a non-empty finite set of issues;
- $\mathcal{V}: \mathcal{A} \longrightarrow \mathcal{P}(\mathcal{F})$ is a valuation function, assigning to each agent a set of issues they accept;
- $\omega, \tau \in \mathbb{Q}$, s.t. $0 \le \omega \le 1$ and $0 \le \tau \le 1$, interpreted, respectively, as similarity threshold and influenceability threshold.

Model Update: Opinion Diffusion and Network Change

Opinion Update

An agent will accept an issue if and only if either:

- The influenceability threshold τ is 0.
- The agent has no influencer and already accepts the issue.
- The proportion of its influencers that accept the issue is at least τ .

Model Update: Opinion Diffusion and Network Change

Opinion Update

An agent will accept an issue if and only if either:

- The influenceability threshold τ is 0.
- The agent has no influencer and already accepts the issue.
- The proportion of its influencers that accept the issue is at least τ .

Network Update

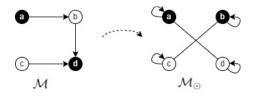
Agents will be connected if and only if the proportion of issues they agree on is at least $\omega.$

Model Update

Example

Model update from $\mathcal M$ to $\mathcal M_\odot$:

- $\mathcal{F} = \{f\};$
- similarity threshold $\omega = 1$;
- influenceability threshold $\tau = \frac{1}{2}$.



Note: the updated model is reflexive and symmetric.

PhDs in Logic XIII

・ロト ・日下・ ・ ヨト・

Model Update

Given a model $\mathcal{M} = \langle \mathcal{A}, \mathcal{S}, \mathcal{F}, \mathcal{V}, \omega, \tau \rangle$, the updated model $\mathcal{M}_{\odot} = \langle \mathcal{A}, \mathcal{S}', \mathcal{F}, \mathcal{V}', \omega, \tau \rangle$ is such that for any $a, b \in \mathcal{A}$ and any $f \in \mathcal{F}$:

$$(a,b) \in \mathcal{S}' \text{ iff } \frac{|(\mathcal{V}(a) \cap \mathcal{V}(b)) \cup (\overline{\mathcal{V}(a)} \cap \overline{\mathcal{V}(b)})|}{|\mathcal{F}|} \ge a$$
$$f \in \mathcal{V}'(a) \text{ iff } \begin{cases} f \in \mathcal{V}(a), & \text{ if } N(a) = \emptyset\\ f \in \mathcal{F}, & \text{ if } \tau = 0\\ \frac{|N_f(a)|}{|N(a)|} \ge \tau, & \text{ otherwise} \end{cases}$$

where $N_f(a) := \{b \in A : (b, a) \in S \text{ and } f \in \mathcal{V}(b)\}$ and $N(a) := \{b \in A : (b, a) \in S\}.$

Syntax \mathcal{L}_{\odot} and Semantics

Definition (Syntax \mathcal{L}_{\odot})

Fix a set of issues ${\cal F}$ and a set of agents ${\cal A}.$ The syntax ${\cal L}_{\odot}$ is the following:

$$\phi := S_{ab} \mid f_a \mid \neg \phi \mid \phi \land \phi \mid \odot \phi$$

where $f \in \mathcal{F}$ and $a, b \in \mathcal{A}$.

Definition (Semantic clauses for \mathcal{L}_{\odot})

The truth of a formula ϕ in \mathcal{M} is inductively defined as follows:

$$\begin{split} \mathcal{M} &\models f_a \text{ if and only if } f \in \mathcal{V}(a) \\ \mathcal{M} &\models S_{ab} \text{ if and only if } (a,b) \in \mathcal{S} \\ \mathcal{M} &\models \neg \phi \text{ if and only if } \mathcal{M} \not\models \phi \\ \mathcal{M} &\models \phi \land \psi \text{ if and only if } \mathcal{M} &\models \phi \text{ and } \mathcal{M} \models \psi \\ \mathcal{M} &\models \odot \phi \text{ if and only if } \mathcal{M}_{\odot} \models \phi \text{, where } \mathcal{M}_{\odot} \text{ is the updated model.} \end{split}$$

PhDs in Logic XIII

Image: A math the second se

Conformity pressure and Similarity pressure

Conformity pressure

The conformity pressure of an agent can be captured with the formula:

$$f_a^{\tau} := (f_a \land \neg \bigvee_{b \in \mathcal{A}} S_{ba}) \lor f_{N(a)}^{\tau}$$

 $f_{N(a)}^{\tau} := \bigvee_{\{G \subseteq N \subseteq \mathcal{A}: \frac{|G|}{|N|} \geq \tau\}} (\bigwedge_{b \in N} S_{ba} \land \bigwedge_{b \notin N} \neg S_{ba} \land ((\bigwedge_{b \in G} f_b \land \neg f_b) \lor (\bigvee_{b \in N} S_{ba} \land \bigwedge_{b \in G} f_b)))$

Conformity pressure and Similarity pressure

Conformity pressure

The conformity pressure of an agent can be captured with the formula:

$$f_a^{\tau} := (f_a \land \neg \bigvee_{b \in \mathcal{A}} S_{ba}) \lor f_{N(a)}^{\tau}$$

$$f_{N(a)}^{\tau} := \bigvee_{\{G \subseteq N \subseteq \mathcal{A} : \frac{|G|}{|N|} \geq \tau\}} (\bigwedge_{b \in N} S_{ba} \land \bigwedge_{b \not\in N} \neg S_{ba} \land ((\bigwedge_{b \in G} f_b \land \neg f_b) \lor (\bigvee_{b \in N} S_{ba} \land \bigwedge_{b \in G} f_b)))$$

Similarity pressure

The *similarity pressure* of one agent with respect to another agent is expressed by the formula:

$$sim_{ab}^{\omega} := \bigvee_{\{E \subseteq \mathcal{F} : \frac{|E|}{|\mathcal{F}|} \ge \omega\}} \bigwedge_{f \in E} (f_a \leftrightarrow f_b)$$

groningen

PhDs in Logic XIII

Reduction Axioms

$$\begin{array}{c|c} \odot S_{ab} \leftrightarrow sim_{ab}^{\omega} & \odot\text{-network} \\ \odot f_a \leftrightarrow f_a^{\tau} & \odot\text{-opinions} \\ \odot(\phi \wedge \psi) \leftrightarrow \odot\phi \wedge \odot\psi & \odot\text{-distributivity} \\ \odot \neg \phi \leftrightarrow \neg \odot\phi & \odot\text{-neg} \end{array}$$

Soundness and Completeness of $L^{\omega\tau}$

Fix ω, τ . The logic $L^{\omega\tau}$ is any complete set of axioms and derivation rules of propositional logic, together with the above reduction axioms, a necessitation rule for \odot , and substitution of equivalents.

Theorem

Let $\omega, \tau \in [0,1]$ be given For any $\phi \in \mathcal{L}_{\odot}$,

$$\models_{\mathcal{C}^{\omega\tau}} \phi \text{ iff } \vdash_{L^{\omega\tau}} \phi.$$

where $C_{\omega,\tau}$ is the class of models with thresholds ω, τ .

Logic for Synchronous Change

2 Stabilization with a single binary issue

Summary and Further work

Stabilization

Objective: investigate the limit properties of the sequences of models obtained by iterative updates of synchronous change.

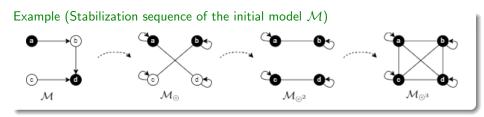
Question 1: Given an initial model \mathcal{M} , does \mathcal{M} stabilize?

Question 2: Given a model \mathcal{M} that does not stabilize, what is its limit behavior?

Stabilization with a single binary issue

Definition

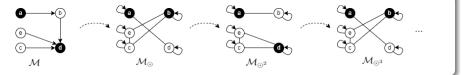
A model \mathcal{M} is stable if and only if $\mathcal{M}_{\odot} = \mathcal{M}$. \mathcal{M} stabilizes if and only if there is an $n \in \mathbb{N}$ such that $\mathcal{M}_{\odot^n} = \mathcal{M}_{\odot^{n+1}}$.



Oscillation

We look at stabilization as a special kind of oscillation (van Benthem 2015).

Example (\mathcal{M}_{\odot} oscillates with length 2)



Note: stabilization is an oscillation of length 1.

・ロト ・回 ト ・ ヨト ・

Partitioning the set of agents

The central concept for characterizing stability is that of an f-partition.

Definition

(*f*-partition) Given any model $\mathcal{M} = \langle \mathcal{A}, \mathcal{S}, \mathcal{F}, \mathcal{V}, \omega, \tau \rangle$ and any $f \in \mathcal{F}$, we call *f*-partition the partition of \mathcal{A} in the four following sets:

•
$$\mathcal{K}_{f} := \{a \in \mathcal{A} : \mathcal{M} \models f_{a} \land f_{a}^{\intercal}\}$$
 ("*f*-keepers");
• $\mathcal{D}_{f} := \{a \in \mathcal{A} : \mathcal{M} \models f_{a} \land \neg f_{a}^{\intercal}\}$ ("*f*-droppers");
• $\mathcal{K}_{\neg f} := \{a \in \mathcal{A} : \mathcal{M} \models \neg f_{a} \land \neg f_{a}^{\intercal}\}$ (" $\neg f$ -keepers");
• $\mathcal{D}_{\neg f} := \{a \in \mathcal{A} : \mathcal{M} \models \neg f_{a} \land f_{a}^{\intercal}\}$ (" $\neg f$ -droppers").

The relative sizes of these four sets determine whether a model stabilizes or not.

They also determine the length of a model's future oscillation.

< 클 ▶ < 클 ▶ 클 → 의 ↔ PhDs in Logic XIII

Steps

(

We characterize stabilization with the following steps:

9 models with
$$\tau = 0$$
 or $\omega = 0$ stabilize;

② if at least two sets of the set $\mathcal{K}_f, \mathcal{D}_f, \mathcal{D}_{\neg f}, \mathcal{K}_{\neg f}$ of the *f*-partition are empty, then the model stabilizes.

If at most one of the sets in the *f*-partition is empty, a model stabilizes if some specific conditions on the relative sizes of the sets K_f, D_f, D_{¬f}, K_{¬f} do not hold.

Step 1: $\tau = 0$ or $\omega = 0$

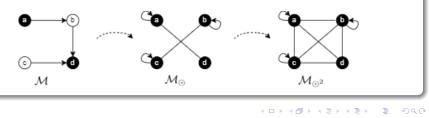
Any model that has either $\tau = 0$ or $\omega = 0$ stabilizes.

If $\tau = 0$, after one step every agent will accept the target issue, thus becoming similar to every other agent.

If $\omega = 0$, after one step every agent will be connected to any other agent, thus having the same conformity pressure as every other agent.

Example

 \mathcal{M} with $\tau = 0$, $\omega = 1$.



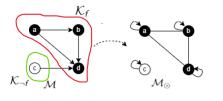
PhDs in Logic XIII

Step 2: At least two sets of the f-partition are empty

If at least two sets of the partition are empty, then the model stabilizes.

Example

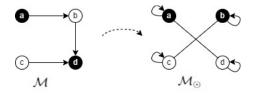
 \mathcal{M} with $\tau, \omega > 0$ in which there are only *f*-keepers and $\neg f$ -keepers.



Step 3: At most one set in the f-partition is empty.

After an update:

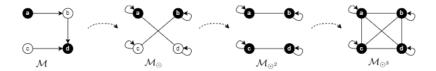
- Models are composed of two disjoint components.
- Within each component every agent is influenced by every agent.
- Within each component, every agent has the same conformity pressure as every other agent.



PhDs in Logic XIII

Step 3: At most one set in the f-partition is empty

If at any point of a sequence of update the two components agree on the opinion to adopt further, a stable state will be reached.



Step 3: At most one set in the f-partition is empty.

For a model not to stabilize, the two generated components must disagree after every update.

Question: Which are all the possible ways in which the two components generated by an update can keep disagreeing with each other?

Equivalently: Which are all the possible ways in which \mathcal{M} can oscillate with length l > 1?

Step 3: Oscillations with l > 1

All the possible ways in which a model \mathcal{M} can oscillate with length l > 1 are:

$$(1) \quad \frac{|\mathcal{K}_{f}|}{|\mathcal{K}_{f}|+|\mathcal{D}_{f}|} < \tau, \ \frac{|\mathcal{D}_{\neg f}|}{|\mathcal{D}_{\neg f}|+|\mathcal{K}_{\neg f}|} \ge \tau, \ \frac{|\mathcal{D}_{\neg f}|}{|\mathcal{K}_{f}|+|\mathcal{D}_{\neg f}|} \ge \tau, \ \frac{|\mathcal{K}_{\neg f}|}{|\mathcal{K}_{\neg f}|+|\mathcal{D}_{f}|} < \tau$$

$$(2) \quad \frac{|\mathcal{K}_{f}|}{|\mathcal{K}_{f}|+|\mathcal{D}_{f}|} \geq \tau, \frac{|\mathcal{D}_{\neg f}|}{|\mathcal{D}_{\neg f}|+|\mathcal{K}_{\neg f}|} < \tau, \frac{|\mathcal{K}_{f}|}{|\mathcal{K}_{f}|+|\mathcal{D}_{\neg f}|} \geq \tau, \ \frac{|\mathcal{D}_{f}|}{|\mathcal{D}_{f}|+|\mathcal{K}_{\neg f}|} < \tau$$

$$(3) \quad \frac{|\mathcal{K}_{f}|}{|\mathcal{K}_{f}|+|\mathcal{D}_{f}|} < \tau, \frac{|\mathcal{D}_{-f}|}{|\mathcal{D}_{-f}|+|\mathcal{K}_{-f}|} \geq \tau, \frac{|\mathcal{D}_{-f}|}{|\mathcal{K}_{f}|+|\mathcal{D}_{-f}|} < \tau, \\ \frac{|\mathcal{K}_{-f}|}{|\mathcal{D}_{f}|+|\mathcal{K}_{-f}|} \geq \tau, \frac{|\mathcal{K}_{-f}|}{|\mathcal{D}_{-f}|+|\mathcal{K}_{-f}|} < \tau, \\ \frac{|\mathcal{K}_{-f}|}{|\mathcal{D}_{-f}|+|\mathcal{K}_{-f}|} < \tau, \frac{|\mathcal{K}_{-f}|}{|\mathcal{K}_{-f}|+|\mathcal{L}_{-f}|} < \tau, \\ \frac{|\mathcal{K}_{-f}|}{|\mathcal{D}_{-f}|+|\mathcal{K}_{-f}|} < \tau, \\ \frac{|\mathcal{K}_{-f}|}{|\mathcal{K}_{-f}|+|\mathcal{K}_{-f}|} < \tau, \\ \frac{|\mathcal{K}_{-f}|+|\mathcal{K}_{-f}|$$

$$(4) \quad \frac{|\mathcal{K}_{f}|}{|\mathcal{K}_{f}|+|\mathcal{D}_{f}|} \geq \tau, \\ \frac{|\mathcal{D}_{-f}|}{|\mathcal{D}_{-f}|+|\mathcal{K}_{-f}|} < \tau, \\ \frac{|\mathcal{K}_{f}|}{|\mathcal{K}_{f}|+|\mathcal{D}_{-f}|} < \tau, \\ \frac{|\mathcal{D}_{f}|}{|\mathcal{D}_{f}|+|\mathcal{K}_{-f}|} \geq \tau, \\ \frac{|\mathcal{L}_{-f}|}{|\mathcal{D}_{-f}|+|\mathcal{K}_{-f}|} \geq \tau, \\ \frac{|\mathcal{K}_{-f}|}{|\mathcal{D}_{f}|+|\mathcal{K}_{-f}|} \geq \tau, \\ \frac{|\mathcal{K}_{-f}|}{|\mathcal{D}_{f}|+|\mathcal{K}_{-f}|} \geq \tau, \\ \frac{|\mathcal{K}_{-f}|}{|\mathcal{D}_{f}|+|\mathcal{K}_{-f}|} \geq \tau, \\ \frac{|\mathcal{K}_{-f}|}{|\mathcal{D}_{f}|+|\mathcal{K}_{-f}|} \geq \tau, \\ \frac{|\mathcal{K}_{-f}|}{|\mathcal{D}_{-f}|+|\mathcal{K}_{-f}|} \geq \tau, \\ \frac{|\mathcal{K}_{-f}|}{|\mathcal{D}_{-f}|+|\mathcal{K}_{-f}|} \geq \tau, \\ \frac{|\mathcal{K}_{-f}|}{|\mathcal{D}_{-f}|+|\mathcal{K}_{-f}|} \geq \tau, \\ \frac{|\mathcal{K}_{-f}|}{|\mathcal{K}_{-f}|+|\mathcal{K}_{-f}|} \geq \tau, \\ \frac{|\mathcal{K}_{-f}|+|\mathcal{K}_{-f}|+|\mathcal{K}_{-f}|} \geq \tau, \\ \frac{|\mathcal{K}_{-f}|+|\mathcal{K}_{-f}|+|\mathcal{K}_{-f}|} \geq \tau, \\ \frac{|\mathcal{K}_{-f}|+|\mathcal{K}_{-f}|+|\mathcal{K}_{-f}|+|\mathcal{K}_{-f}|+|\mathcal{K}_{-f}|+|\mathcal{K}_{-f}|+|\mathcal{K}_{-f}|+|\mathcal{K}_{-f}|+|\mathcal{K}_{-f}|+|\mathcal{K}_{-f}|+|\mathcal{K}_{-f}|+|\mathcal{K}_{-f}|+|\mathcal{K}_{-f}|+|\mathcal{K}_{-f}|+|$$

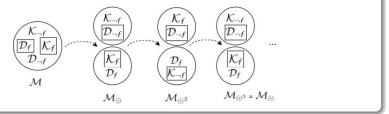
Condition (1) and (2) characterize oscillation of length 2; conditions (3) and (4) characterize oscillation of length 4.

Example: Condition (1)

$$\text{Condition (1): } \frac{|\mathcal{K}_{f}|}{|\mathcal{K}_{f}|+|\mathcal{D}_{f}|} < \tau, \frac{|\mathcal{D}_{\neg f}|}{|\mathcal{D}_{\neg f}|+|\mathcal{K}_{\neg f}|} \ge \tau, \frac{|\mathcal{D}_{\neg f}|}{|\mathcal{K}_{f}|+|\mathcal{D}_{\neg f}|} \ge \tau, \frac{|\mathcal{K}_{\neg f}|}{|\mathcal{K}_{\neg f}|+|\mathcal{D}_{f}|} < \tau$$

Example

Starting from a model \mathcal{M} , representation of the oscillatory behavior determined by condition (1).



Characterizing stabilization

Theorem

Let $\mathcal{M} = \langle \mathcal{A}, \mathcal{S}, \mathcal{F}, \mathcal{V}, \omega, \tau \rangle$ and $\mathcal{M} \in \mathcal{C}_1$, \mathcal{M} stabilizes if and only if one of the following holds:

- $\ \, {\bf 0} \ \, \omega=0 \ \, {\rm or} \ \, \tau=0;$
- **2** at least two of the sets $\mathcal{K}_f, \mathcal{D}_f, \mathcal{D}_{\neg f}, \mathcal{K}_{\neg f}$ are empty;
- at most one of the sets K_f, D_f, D_{¬f}, K_{¬f} is empty and none of the conditions (1) to (4) above holds.

Overview

1 Logic for Synchronous Change

2 Stabilization with a single binary issue

Summary and Further work

Summary

- A sound and complete axiom system $L^{\omega\tau}$ for synchronous opinion diffusion in similarity-driven networks.
- Characterization of stabilization for the diffusion of a single binary issue in similarity-driven networks.

Further Work

- Characterize stabilization for models with multiple issues.
- Investigate the interdefinability of synchronic and diachronic changes.

- Analyse more refined network-change update: agents connect to similar agents that are *close enough*.
- Refine opinions: acceptance/rejection VS evidence-based approach.

Contact: e.baccini@rug.nl

